AVALIAÇÃO DA ATIVIDADE ANTIOXIDANTE DO EXTRATO LISADO DE CÉLULAS LÍQUIDO E LIFOFILIZADO DO Lactobacillus acidophilus E SUA CORRELAÇÃO COM A ATIVIDADE QUANDO INCORPORADO A UM GEL COSMÉTICO

Suzana Bender, Luciana Oliveira de Fariña, Helder Lopes Vasconcelos, Ana Caroline da Costa, John Lennon Romani, Loana Moraes Simionato

Resumo


Aplicações não intestinais de probióticos são pouco investigadas, no entanto os probióticos são capazes de melhorar a saúde da pele por meio de aplicações tópicas e ainda como antioxidantes. Dessa forma, o objetivo deste trabalho foi comparar a atividade antioxidante do extrato lisado de células líquido e liofilizado do Lactobacillus acidophilus e relacionar com a atividade antioxidante dessas frações quando adicionadas à uma forma cosmética gel. Os resultados descritos demonstram que o extrato lisado líquido e liofilizado do Lactobacillus acidophilus representam uma fonte potencial de antioxidantes naturais e que existe uma correlação com a atividade dos extratos lisados quando adicionados à forma cosmética gel. Entretanto a atividade antioxidante se mostrou maior no extrato de células liofilizado em gel do que em solução devido ao pH do gel e pelo fato do extrato lisado liofilizado aparentemente ter se dissolvido melhor.


Texto completo:

PDF

Referências


ABRIOUEL, H.; HERMANN, A.; STARKE, J.; YOUSIF, N. M.; WIJAYA, A.; TAUSCHER, B.; HOLZAPFEL, W.; FRANZ, C. M. Cloning and heterologous expression of hematin-dependent catalase produced by Lactobacillus plantarum CNRZ 1228. Applied and Environmental Microbiology, [s.l.], v. 70, n.1, p. 603–606, jan. 2004.

AFIFY, A. E.- M. M. R.; ROMEILAH, R. M.; SULTAN, S. I. M.; HUSSEIN, M. M. Antioxidant Activity and Biological Evaluations of Probiotic Bacteria Strains. International Journal of Academic Research, [s.l.], v. 4, n.6, p. 131-139, nov. 2012.

AMANATIDOU, A.; SMID, E. J; BENNIK, M. H. J; GORRIS, L. G. M. Antioxidative properties of Lactobacillus sakei upon exposure to elevated oxygen concentrations. FEMS Microbiology Letters, [s.l.], v. 203, n. 1, p. 87–94, set. 2001.

AMARETTI, A.; DI NUNZIO, M.; POMPEI, A.; RAIMONDI, S.; ROSSI, M.; BORDONI, A. Antioxidant properties of potentially probiotic bacteria: in vitro and in vivo activities. Applied Microbiology Biotechnology, [s.l.], v. 97, n. 2, p. 809-817, jul. 2012

AMDEKAR, S.; KUMAR, A.; SHARMA, P.; SINGH, R.; SINGH, V. Lactobacillus protected bone damage and maintained the antioxidant status of liver and kidney homogenates in female wistar rats. Molecular and Cellular Biochemistry, [s.l.], v. 368, n. 1-2, p. 155-165, jun. 2012.

AN, H.; ZHOU, H.; HUANG, Y.; WANG, G.; LUAN, C.; MOU, J.; LUO, Y.; HAO, Y. High-Level Expression of Heme-Dependent Catalase Gene katA from Lactobacillus Sakei Protects Lactobacillus Rhamnosus from Oxidative Stress. Molecular Biotechnology, [s.l.], v. 45, n. 2, p. 155-160, mar. 2010

ANANTA, E.; VOLKERT, M.; KNORR, D. Cellular injuries and storage stability of spray-dried Lactobacillus rhamnosus GG. International Dairy Journal, [s.l.], v.15, n. 4, p.399-409, Apr. 2005. Disponível em http://api.elsevier .com/content/article/ PII:S095869460400192X?httpAccept=text/xml.Acesso em: 14 nov. 2015.

ANDERS, R. F.; HOGG, D. M.; JAGO, G. R. Formation of hydrogen peroxide by Group N Streptococci and its effect on their growth and metabolism. Applied Microbiology Biotechnology, [s.l v. 19, p. 608-612, abr.1970.

ARASU, M. V; KIM, D. H; KIM, P. I.; JUNG, M. W; ILAVENIL, S; JANE, M; LEE, K. D; AL-DHABI, N. A; CHOI, K. C. In vitro antifungal, probiotic and antioxidant properties of novel Lactobacillus plantarum K46 isolated from fermented sesame leaf. Annals Microbiology, [s.l.], v. 64, n. 3, p. 1333-1346, dez. 2014

ARCHIBALD, F. Manganese: its acquisition by and function in the lactic acid bacteria. Critical Reviews in Microbiology, [s.l.], v. 13, p. 63-109, fev.1986.

ARCHIBALD, F. S.; FRIDOVICH, I. Manganese and defenses against oxygen toxicity in Lactobacillus plantarum. Journal of Bacteriology, [s.l.], v. 145, p. 442–451, jan.1981.

AXELSSON, L.T. Lactic acid bacteria: Classification and physiology. In: SALMINEN, S.; VONWRIGHT, A. (Eds) Lactic acid bacteria. New York: Marcel Dekker,1993. p.1-63.

BARNESE, K.; GRALLA, E. B; VALENTINE, J. S, CABELLI, D. E. Biologically relevant mechanism for catalytic superoxide removal by simple manganese compounds.Proceedings of The National Academy of Sciences, [s.l.], v. 109, n. 18, p. 6892-6897, abr. 2012.

BARYNIN, V. V.; WHITTAKER, M. M; ANTONYUK, S. V.; LAMZIN, V. S; HARRISON P. M; ARTYMIUK, P. J.; WHITTAKER, J. W. Crystal Structure of Manganese Catalase from Lactobacillus plantarum. Structure, [s.l.], v. 9, n. 8, p. 725-738, ago. 2001.

BEZKOROVAINY, A.; KOT, E. Interaction of Bifidobacteria with Ferric Iron. International Dairy Journal, [s.l.], v. 8, n. 5-6, p. 507-512, mai 1998. Disponível em: http://api.elsevier.com/content/article/PII:S0958694698000788?httpAccept=text/xml.Acesso em: 14 nov. 2015.

BLACKWELL, K. J.; SINGLETON, I.; TOBIN, J. M. Metal cation uptake by yeast: a review. Applied Microbiology and Biotechnology, [s.l.], v. 43, n. 4, p. 579-584, set. 1995.

BRAND-WILLIAMS, W.; CUVELIER, M. E.; BERSET, C. Use of a free radical method to evaluate antioxidant Activity. Food Science and Technology - Lebensmittel-Wissenschaft & Technologie, rev. 28, p. 25-30, 1995.

BRASIL. Agência Nacional de Vigilância Sanitária (ANVISA). Formulário Nacional da Farmacopeia Brasileira. 2ª ed. Brasília, 2011.

BROOIJMANS, R.; SMIT, B.; SANTOS, F.; VAN RIEL, J.; de VOS, W. M.; HUGENHOLTZ, J. Heme and menaquinone induced electron transport in lactic acid bacteria. Microbial Cell Factories, [s.l.], v. 8, n. 1, p.28-32, may. 2009.

BRUNO-BÁRCENA J.M.; ANDRUS J.M.; LIBBY S.L.; KLAENHAMMER T.R.; HASSAN H.M. Expression of a Heterologous Manganese Superoxide Dismutase Gene in Intestinal Lactobacilli Provides Protection against Hydrogen Peroxide Toxicity. Applied and Environmental Microbiology, [s.l.], v. 70, n.8, p. 4702–10, aug.2004.

BRUYNEEL, B.; WOESTYNE, M. VANDE; VERSTRAETE, W. Lactic acid bacteria: Microorganisms able to grow in the absence of available iron and copper. Biotechnology Letters, [s.l.], v. 11, n. 6, p.401-406, jun. 1989.

CANO-GARRIDO, O.; SERAS-FRANZOSO, J.; GARCIA FRUITÓS, E. Lactic acid bacteria: reviewing the potential of a promising delivery live vector for biomedical purposes. Microbial Cell Factories, [s.l.], v. 14, n. 1, p.2-12, set. 2015.

CHIBA, K. Development of functional cosmetic ingredients using lactic acid bacteria in Japan. Japanese Journal of Lactic Acid Bacteria, [s.l.], v. 18, n. 3, p. 105-112, 2007.

CHOI; S. S.; KIM, Y.; HAN, K. S.; YOU, S.; OH, S.; KIM, S. H. Effects of Lactobacillus strains on cancer cell proliferation and oxidative stress in vitro. Letters in Applied Microbiology, v. 42, p. 452–458, 2006.

CHONG B. F; BLANK L. M; MCLAUGHLIN R.; NIELSEN L. K. Microbial hyaluronic acid production. Applied Microbiology and Biotechnology, v. 66, n.4, p. 341–351, jan. 2005.

CONDON, S. Responses of lactic acid bacteria to oxygen. FEMS Microbiol, rev. 46, p. 269–281, 1987.

COPLEY S. D.; DHILLON, J. K. Lateral gene transfer and parallel evolution in the history of glutathione biosynthesis genes. Genome Biology, rev. 3, p. 1–16, apr.2002.

COSTA-VALE, J. Desenvolvimento de um Creme Antioxidante Para Uso Dermatológico a partir de um Princípio Ativo Contendo Pré/Probióticos. 2015. Trabalho de conclusão de curso (Bacharel em Farmácia)-Graduação em Farmácia, Faculdade Assis Gurgacz, Cascavel, 2015.

DAVIS, C. D.; MILNER, John A. Gastrointestinal microflora, food components and colon cancer prevention. The Journal of Nutritional Biochemistry, [s.l.], v. 20, n. 10, p. 743-752, out. 2009.Disponível em: http://api.elsevier.com/content/ article/PII: S09 55286309001193?httpAccept=text/xml Acesso em: 14 nov. 2015.

DELCOUR, J.; FERAIN, T.; DEGHORAIN, H.; PALUMBO, E.; HOLS, P. The biosynthesis and functionally of the cell-wall of lactic acid bacteria. Antonie van Leeuwenhoek, [s.l.], v. 76, n. 1/4, p. 159-184, 1999.

DRISCOLL, K. E; CARTER, J. M; BORM, P. J. Antioxidant defense mechanisms and the toxicity of fibrous and nonfibrous particles. Inhalation Toxicololy, [s.l.], v. 14, ed. 1, p. 101-118, 2002.

DUHUTREL, P.; BORDAT, C.; WU, T. D; ZAGOREC, M.; GUERQUIN-KERN, J. L.; CHAMPOMIER-VERGES, M. C. Iron sources used by the nonpathogenic lactic acid bacterium Lactobacillus sakei as revealed by electron energy loss spectroscopy and secondary-ion mass spectrometry. Applied and Environmental Microbiology, v.76, n. 2, p. 560-565, 2010. Disponível em: http://doi.org/10.1128/AEM.02205-09. Acesso em 15 de novembro de 2012.

DUHUTREL, P.; BORDAT, C.; WU, T. D; ZAGOREC, M.; GUERQUIN-KERN, J. L.; CHAMPOMIER-VERGES, M. C. Iron sources used by the nonpathogenic lactic acid bacterium Lactobacillus sakei as revealed by electron energy loss spectroscopy and secondary-ion mass spectrometry. Applied and Environmental Microbiology, v.76, n. 2, p. 560-565, 2010. Disponível em: http://doi.org/10.1128/AEM.02205-09. Acesso em 15 de novembro de 2012.

ENGESSER, D. M.; HAMMES, W. P. Non-Heme Catalase Activity of Lactic Acid Bacteria. Systematic and Applied Microbiology, [s.l.], v. 17, n. 1, p. 11-19, mar. 1994. Disponível em: http://api.Elsevier.com/content/article/PIIS072 3202 01180 0251?httpAccept=text/xml. Acesso em: 13 nov. 2015.

FRIES, A. T.; FRASSON, A. P. Z. Avaliação da atividade antioxidante de cosméticos anti-idade. Revista Contexto e Saúde, v. 10, n. 19, p. 17- 23, jul./dez. 2010.

GERBINO, E. et al. Role of S-layer proteins in bacteria. World Journal of Microbiology and Biotechnology. [s.l.], v. 31, n. 12, p. 1877-1887, set. 2015.

GHANY, K. A. E.; ELHAFEZ, E.A.; HAMOUDA, R.A.; MAHROUS, H.; AHMED, F. A. H.; HAMZA, H. A. Evaluation of Antioxidant and Antitumor Activities of Lactobacillus acidophilus Bacteria Isolated from Egyptian Infants. International Journal of Pharmacology, [s.l.] v. 10, n. 5, p. 282-288, mai. 2014.

GONZALEZ, S. N.; APELLA, M. C.; ROMERO, N.; PESCE, D. R. H. A. A.; OLIVER, G. Superoxide dismutase activity in some strains of lactobacilli: Induction by manganese. Chemical & Pharmaceutical Bulletin, [s.l.], v. 37, n. 11, p.3026-3028, 1989.

GONZALEZ, S. N.; APELLA, M. C.;CHAUD, C. A. N.; OLIVER, G. Evidence of superoxide dismutase in Lactobacillus acidophilus. Chemical & Pharmaceutical Bulletin, [s.l.], v. 39, n. 4, p.1065-1067, 1991.

GUCHTE, M. van; SERROR, P.; CHERVAUX, C; SMOKVINA, T.; EHRLICH, S. D.; MAGUIN, E. Stress responses in lactic acid bacteria. Antonie van Leeuwenhoek, [s.l.], v. 82, n. 1/4, p. 187-216, ago. 2002.

GUCHTE, M. van; SERROR, P.; CHERVAUX, C; SMOKVINA, T.; EHRLICH, S. D.; MAGUIN, E. Stress responses in lactic acid bacteria. Antonie van Leeuwenhoek, [s.l.], v. 82, n. 1/4, p. 187-216, ago. 2002.

GUENICHE, A. Use of probiotic microorganisms to limit skin irritation. US Patent 20100226892 A1, 9 sep. 2010.

GUENICHE, A.; BRETON, L.; BALLEVRE, O.; BLUM-SPERISE S.; BUREAU-FRANZ, I.; BENYACOUB, J. Cosmetic and/or dermatological composition for sensitive skin. US Patent 20060171936 A1, 3 ago. 2006.

HANSEN, J. E.; JESPERSEN, L. K. Wound or tissue dressing comprising lactic acid bacteria. US Patent 20100143447 A1, 19 dez. 2007.

HIGUCHI, M. The Effect of Oxygen on the Growth and Mannitol Fermentation of Streptococcus mutans. Microbiology, [s.l.], v. 130, n. 7, p. 1819-1826, jul. 1984.

HO, L.: YANG, S.G. Cosmetic material obtained from a lactic acid fermentation broth. US5324515 A1, 13 out. 1992http://api.elsevier.com/content/article/PII:S0167701202001896?httpAccept=text/xml>. Acesso em: 14 nov. 2015

HUTTENHOWER, C. et al. Structure, function and diversity of the healthy human microbiome. Nature, [s.l.], v. 486, n. 7402, p. 207-214, jun. 2012.

IGARASHI, T.; KONO, Y.; TANAKA, K. Molecular Cloning of Manganese Catalase from Lactobacillus plantarum. Journal of Biological Chemistry, [s.l.], v. 271, n. 47, p. 29521-29524, nov. 1996.

IORDACHE, F., IORDACHE, C., CHIFIRIUC, M.C., BLEOTU, C., PAVEL, M., SMARANDACHE, D., SASARMAN, E., LAZA, V., BUCU, M., DRACEA, O., LARION, C., COTA, A., LIXANDRU, M. Antimicrobial and immunomodulatory activity of some probiotic fractions with potential clinical application. Archiva Zootechnica v.11, p.41–51,2008.

JAFAREI, P.; EBRAHIMI, M. T. Lactobacillus acidophilus cell structure and application. African Journal of Microbiology Research, [s.l.], v. 24, n. 5, p. 4033-4042, nov. 2011.

JANSCH, A.; KORACLI, M.; VOGEL, R. F.; GANZLE, M. G. Glutathione Reductase from Lactobacillus sanfranciscensis DSM20451T: Contribution to Oxygen Tolerance and Thiol Exchange Reactions in Wheat Sourdoughs. Applied and Environmental Microbiology, [s.l.], v. 73, n. 14, p. 4469-4476, mai. 2007

JONES, D. P. Redox potential of GSH/GSSG couple: Assay and biological significance. Protein Sensors And Reactive Oxygen Species - Part B: Thiol Enzymes and Proteins, [s.l.], n. 348, p.93-112, dez. 2003.

KANNO, T.; KUDA, T.; AN, C.; TAKAHASHI, H; KIMURA, B. Radical scavenging capacities of saba narezushi, Japanese fermented chub mackerel, and its lactic acid bacteria. Lwt - Food Science and Technology, [s.l.], v. 47, n. 1, p. 25-30, 7 jun. 2012. Disponível em http:// api.elsevier. com/content/article/ PII:S0023643 812000096?httpAccept=text/xml>. Acesso em: 13 nov. 2015.

KIM, H. S; CHAE, H. S; JEONG, S. G; HAM, J. S; IM, S. K; AHN, C. N.; LEE, J. M. In vitro Antioxidative Properties of Lactobacilli. Journal of Animal Science, [s.l.], v. 19, n. 2, p. 262-265, dez. 2005.

KLEEREBEZEM, M.; BOEKHORST, J.; VAN KRANENBURG, R.; MOLENAAR, D.; KUIPERS, O. P; LEER, R; TARCHINI, R.; PETERS, S. A; SANDBRINK, H. M. Complete genome sequence of Lactobacillus plantarum WCFS1. Proceedings of the National Academy of Sciences, [s.l.], v. 100, n. 4, p.1990-1995, fev. 2003.

KOT, E.; BEZKOROVAINY, A. Uptake of iron by Bifidobacterium thermophilum depends on the metal content of its growth medium. Journal of Dairy Science, [s.l.], v. 74, n. 9, p. 2920-2926, set. 1991.

KOT, E.; BEZKOROVAINY, A. Uptake of iron by Bifidobacterium thermophilum depends on the metal content of its growth medium. Journal of Dairy Science, [s.l.], v. 74, n. 9, p. 2920-2926, set. 1991.

KOT, E.; FURMANOV, S.; BEZKOROVAINY, A. Ferrous iron oxidation by Lactobacillus acidophilus and its metabolic products. Journal of Agricultural and Food Chemistry, [s.l.], v. 43, n. 5, p. 1276-1282, mai. 1995.

KOT, E.; HALOFTIS, G.; BEZKOROVAINY, A. Iron accumulation by bifidobacteria at low pO2 and in air: action of putative ferroxidase. Journal of Agricultural and Food Chemistry, [s.l.], v. 42, n. 3, p. 685-688, mar. 1994

KUDA, T.; KANEKO, N.; YANO, T.; MORI, M. Induction of superoxide anion radical scavenging capacity in Japanese white radish juice and milk by Lactobacillus plantarum isolated from aji-narezushi and kaburazushi. Food Chemistry, [s.l.], v. 120, n. 2, p. 517-522, maio 2010. Disponível em: http://api.elsevier.com/content/ article/PII:S0308814609012394?httpAccept=text/xml>. Acesso em: 12 nov. 2015.

KULLISAAR, T.; ZILMER, M.; MIKELSAAR, M.; VIHALEMM, T.; ANNUK, H.; KAIRANE, C.; KILK, A. Two antioxidative lactobacilli strains as promising probiotics. International Journal of Food Microbiology, [s.l.], v. 72, n. 3, p. 215-224, fev. 2002. Disponível em: http://api.elsevier.com/content/article/PII:S016816050100 67 42?httpAccept=text/xml>. Acesso em: 12 nov. 2015.

LAI, Y.; TSAI, S.; LEE, M. Isolation of exopolysaccharide producing Lactobacillus strains from sorghum distillery residues pickled cabbage and their antioxidant properties. Food Science and Biotechnology, [s.l.], v. 23, n. 4, p. 1231-1236, ago. 2014.

LEE, J.; HWANG, K.; CHUNG, M. Y; CHAO, D. H; PARK, C. S. Resistance of Lactobacillus casei KCTC 3260 to Reactive Oxygen Species (ROS): Role for a Metal Ion Chelating Effect. Journal of Food Science, [s.l.], v. 70, n. 8, p. 388-391, 31 maio 2006. Disponível em: http://api. wiley.com/online library/tdm/v1 /articles/10.1111/j. 13652621.2005.tb11524.x>.Acesso em: 13 nov. 2015.

LEE, J.; HWANG, K.; CHUNG, M. Y; CHAO, D. H; PARK, C. S. Resistance of Lactobacillus casei KCTC 3260 to Reactive Oxygen Species (ROS): Role for a Metal Ion Chelating Effect. Journal of Food Science, [s.l.], v. 70, n. 8, p. 388-391, 31 maio 2006. Disponível em: http://api. wiley.com/online library/tdm/v1 /articles/10.1111/j. 13652621.2005.tb11524.x>.Acesso em: 13 nov. 2015.

LEW, L. C.; LIONG, M. T. Bioactives from probiotics for dermal health: functions and benefits. Jornal of Applied Microbiology, [s.l.], v. 114, n. 5, p. 1241-1253, 1 fev. 2013. Disponível em: http://api.wiley.com/onlinelibrary /tdm/v1/ articles/1 0.1111/jan. 12137>. Acesso em: 15 nov. 2015

LIN, M. Y.; YEN, C. L. Reactive Oxygen Species and Lipid Peroxidation Product-Scavenging Ability of Yogurt Organisms. Journal of Dairy Science, [s.l.], v. 82, n. 8, p. 1629-1634, ago. 1999.

LIN, M.; YEN, C. Antioxidative Ability of Lactic Acid Bacteria. Journal of Agricultural and Food Chemistry, [s.l.], v. 47, n. 4, p. 1460-1466, abr. 1999.

LIN, MY; CHANG, F.J. Antioxidative effect of intestinal bacteria Bifidobacterium longum ATCC 15708 and Lactobacillus acidophilus ATCC 4356. Digestive Diseases and Sciences, [s.l.], v. 45, n. 8, p. 1617-1622, aug. 2000.

LIN, MY; CHANG, F.J. Antioxidative effect of intestinal bacteria Bifidobacterium longum ATCC 15708 and Lactobacillus acidophilus ATCC 4356. Digestive Diseases and Sciences, [s.l.], v. 45, n. 8, p. 1617-1622, aug. 2000.

LUTGENDORFF, F.; TRULSSON, L.M.; VAN, M. L. P.; RIJKERS, G.T.; TIMMERMAN, H.M.; FRANZÉN, L.E.; GOOSZEN, H. G.; AKKERMANS, L.M.; SODERHOLM, J. D.; SANDSTROM, P. A. Probiotics enhance pancreatic glutathione biosynthesis and reduce oxidative stress in experimental acute pancreatitis. Ajp: Gastrointestinal and Liver Physiology, [s.l.], v. 295, n. 5, p.1111-1121, set. 2008

MARQUES, L. G. Liofilização de frutas tropicais. 2008. 255 p. Tese (Doutorado em Engenharia Química) - Universidade Federal de São Carlos, São Carlos, São Paulo, 2008.

MISHRA, V.; SHAH, C.; MOKASHE, N.; CHAVAN, R.; YADAV, H.; PRAJAPATI, J. Probiotics as Potential Antioxidants: A Systematic Review. Journal of Agricultura and Food Chemistr., [s.l.], v. 63, n. 14, p.3615-3626, 15 abr. 2015. Disponível em:. Acesso em: 15 nov. 2015.

MIYOSHI, A.; ROCHAT, T.; GRATADOUX, J. J.; LE LOIR, Y.; OLIVEIRA, S. C.; LANGELLA, P.; AZEVEDO, V. Oxidative stress in Lactococcus lactis. Genetics and Molecular Research, v. 2, n.4, p. 348–359, dec. 2003.

MOLYNEUX, P. The use of the stable free radical diphenylpicrylhydrazyl (DPPH) for estimating antioxidant activity Journal of Science and Technology, Songkla, v. 26, n. 2, p. 211-219, 2003.

MRVčIć, J.; STANZER, D.; SOLIC, E.; STEHLIK, T. V. Interaction of lactic acid bacteria with metal ions: opportunities for improving food safety and quality. World Journal of Microbiology and Biotechnology, [s.l.], v. 28, n. 9, p.2771-2782, jun. 2012.

NARDONE, G.; COMPARE, D.; LIGUORI, E.; DI MAURO, V.; ROCCO, A.; BARONE, M.; NAPOLI, A; LAPI, D.; IOVENE, M. R.; COLANTUONI, A. Protective effects of Lactobacillus paracasei F19 in a rat model of oxidative and metabolic hepatic injury. Ajp: Gastrointestinal and Liver Physiology, [s.l.], v. 299, n. 3, p.669-676, jun. 2010.

NUR, I.; MUNNA, M. S.; NOOR, R. Study of exogenous oxidative stress response in Escherichia coli, Pseudomonas spp., Bacillus spp., and Salmonella spp. Turkish Journal of Biology, [s.l.], v. 38, n. 4, p.502-509, jul. 2014.

OKTYABRSKII, O. N.; SMIRNOVA, G. V.Redox potential changes in bacterial cultures under stress conditions. Microbiology, [s.l.], v. 81, n. 2, p.131-142, abr. 2012.

OU, C. C.; LU, T. M.; TSAI, J. J.; YEN, J. H.; CHEN, H. W.; LIN, M. Y. Antioxidative effect of lactic acid bacteria: intact cells vs. intracellular extracts Journal. Food and Drug Analysis, rev. 17, p. 209–216, 2009.

OUWEHAND, A.C., BATSMAN, A., AND SALMINEN, S. Probiotics for the skin: a new area of potential application? Letters in Applied Microbiology, v. 36, p.327-331,2003.

PAN, D.; MEI, X. M Antioxidant activity of an exopolysaccharide purified from Lactococcus lactis subsp. lactis 12.Carbohydrate Polymers, [s.l.], v. 80, n. 3, p.908-914, 5 maio 2010. Disponível em: . Acesso em: 15 nov. 2015.

PERAN, L.; CAMUESCO, D.; COMALADA, M.; BAILON, E.; HENRIKSSON, A.; XAUS, J.; ZARZUELO, A.; GALVEZ, J. A comparative study of the preventative effects exerted by three probiotics, Bifidobacterium lactis , Lactobacillus casei and Lactobacillus acidophilus , in the TNBS model of rat colitis. Journal of Applied Microbiology, [s.l.], v. 103, n. 4, p.836-844, out. 2007. Disponível em: .Acesso em : 15 nov. 2015.

PIENIZ, S.; ANDREAZZA, R,; ANGHINONI, T.; CAMARGO, F.; BRANDELLI, A. Probiotic potential, antimicrobial and antioxidant activities of Enterococcus durans strain LAB18s. Food Control, [s.l.], v. 37, p.251-256, mar. 2014..Disponível em: http://api.elsevier.com/content/article/PII:S0956713513005100?httpAccept=text/xmlAcesso em: 15 nov. 2015.

POPHALY, S. D.; SINGH, R.; KAUSHIK, J.; TOMAR, K. Current status and emerging role of glutathione in food grade lactic acid bacteria. Microbial Cell Factories, [s.l.], v. 11, n. 1, p.111-114, ago. 2012.

REDONDO, N. C. Avaliação in vitro de características probióticas do Enterococcus faecium CRL183 e do Lactobacillus helveticus ssp jugurti 416. 2008. 416 p. Dissertação (Mestrado) - Programa de Pós Graduação em Alimentos, Ciências de Alimentos, Universidade Estadual Paulista “Júlio Mesquita Filho, Araraquara.

RODRIGUES, K.L., CAPUTO, L.R., CARVALHO, J.C., EVANGELISTA, J., AND SCHNEEDORF, J.M. Antimicrobial and healing activity of kefir and kefiran extract. International Journal of Antimicrobial Agents, v. 25, p. 404-408, 2005.

ROSENKRANZ, M.E., SCHULTE, D.J., AGLE, L.M., WONG, M.H., ZHANG, W., IVASHKIV, L., DOHERTY, T.M., FISHBEIN, M.C., LEHMAN, T.J., MICHELSEN, K.S., AND ARDITI, M. TLR2 and MyD88 contribute to Lactobacillus casei extract-induced focal coronary arteritis in a mouse model of Kawasaki disease. Circulation, v. 112, n.19, p. 2966-2973,2005.

SAADATZADEH, A.; FAZELI, M. R.; JAMALIFAR, H.; DINARVAND, R. Probiotic Properties of Lyophilized Cell Free Extract of Lactobacillus casei. Jundishapur Journal of Natural Pharmaceutical Products, [s.l.], v. https://orcid.org/0000-0001-9038-65573, n. 8, p.131-137, ago. 2013.

SAIDE, J. A. O.; GILLILAND, S. E. Antioxidative Activity of Lactobacilli Measured by Oxygen Radical Absorbance Capacity.Journal of Dairy Science, [s.l.], v. 88, n. 4, p.1352-1357, abr. 2005.

SANCHEZ-MORENO, C. Review: Methods used to evaluate the free radical scavenging activity in foods and biological systems. Food Sci. Technol. Int. v.8 p.121-137, 2002.

SENZ, M.; LENGERICH, B. V.; BADER, J.; STAHL, U.; Control of cell morphology of probiotic Lactobacillus acidophilus for enhanced cell stability during industrial processing. International Journal of Food Microbiology, [s.l.], v. 192, n. 1, p.34-42, jan. 2015. Disponível em: http://api.elsevier.com/ content/article/PII:S016 8160514004784?httpAccept=text/xml. Acesso em: 13 nov. 2015.

SERATA, M.; IINO, T.; YASUDA, E.; SAKO, T.Roles of thioredoxin and thioredoxin reductase in the resistance to oxidative stress in Lactobacillus casei. Microbiology, [s.l.], v. 158, n. 4, p.953-962, fev. 2012.

SERRAZANETTI, D. I.; GUERZONI, ME E.; CORSETTI, A.; VOGEL, R. Metabolic impact and potential exploitation of the stress reactions in lactobacilli. Food Microbiology, [s.l.], v. 26, n. 7, p.700-711, out. 2009. Disponível em: http://api.elsevier.com/content/article/PII:S0740002009001671?httpAccept=text/xml>. Acesso em: 15 nov. 2015.

SODA, M.; AHMED, N.; OMRAN, N.; OSMAN, G.; MORSI, A. Isolation, identification and selection of lactic acid bacteria cultures for cheesemaking. Emirates Journal of Food and Agriculture, [s.l.], v. 17, n. 1, p.51-71, 2003.

SCHMITT, J. A. D.; Avaliação do Perfil Probiótico de Cepas de Lactobacillus acidophilus Destinados a Aplicações Farmacêuticas e Alimentícias. 2014. Dissertação de Mestrado(Mestrado em Ciências Farmacêuticas) Universidade Estadual do Oeste do Paraná, Brasil.

SPIGELMAN, M.; ROSS, M. Method of using topical probiotics for the inhibition of surface contamination by a pathogenic microorganisms and composition therefor. US 20080107699 A1, 24 oct. 2007.

SPYROPOULOS, B. G.; MISIAKOS, E. P; FOTIADIS, C.; STOIDIS, C. N. Antioxidant Properties of Probiotics and Their Protective Effects in the Pathogenesis of Radiation-Induced Enteritis and Colitis. Digestive Diseases and Science, [s.l.], v. 56, n. 2, p.285-294, jul. 2010.

STECCHINI, M. L.; TORRE, M.; MUNARI, M. Determination of peroxy radical scavenging of lactic acid bacteria. International Journal of Food Microbiology, [s.l.], v. 64, n. 1-2, p.183-188, 28 fev. 2001. Disponível em: . Acesso em: 13 nov. 2015.

TALWALKAR, A.; KAILASAPATHY, K.; HOURIGAN, J.; PEIRIS, P.; ARUMUGASWAMY, R. An improved method for the determination of NADH oxidase in the presence of NADH peroxidase in lactic acid bacteria. Journal of Microbiological Methods, [s.l.], v. 52, n. 3, p.333-339, mar. 2003.

TALWALKAR, A.; KAILASAPATHY. The Role of Oxygen in the Viability of Probiotic Bacteria with Reference to L. acidophilus and Bifidobacterium spp.Current Issues in Intestinal Microbiology, [s.l.], v. 5, n. 1, p. 1–8, marc.2004.

TALWALKAR, A.; KAILASAPATHY. The Role of Oxygen in the Viability of Probiotic Bacteria with Reference to L. acidophilus and Bifidobacterium spp.Current Issues in Intestinal Microbiology, [s.l.], v. 5, n. 1, p. 1–8, marc.2004.

TEODORESCU, R. A natural eubiotic product for maintenance and treatment of teguments. WO Patent 007332, 18 feb. 1999.

TERAN, C. Probiotic Technology.. Active Concepts. 2011.

TSAI, C. C.; CHAN, C. F.; HUANG, W. Y.; LIN, J. S.; CHAN, P.; LIU, H. I.; LIN, Y. S. Applications of Lactobacillus rhamnosus Spent Culture Supernatant in Cosmetic Antioxidation, Whitening and Moisture Retention Applications. Molecules, [s.l.], v. 18, n. 11, p.14161-14171, nov. 2013.

UUGANTSETSEG, E.; BATJARGAL, B. Antioxidant activity of probiotic lactic acid bacteria isolated from Mongolian airag. Mongolian Journal of Chemistry, [s.l.], v. 15, p.73-78, dez. 2014.

VINTIÑI, E.O., MEDINA, M.S. Host immunity in the protective response to nasal immunization with a pneumococcal antigen associated to live and heat-killed Lactobacillus casei, BMC Immunology, v. 12, 2011.

WANG, J.; JI, H. F.; WANG, S. X.; ZHANG, D. Y.; LIU, H.; SHAN, D. C.; WANG, Y. M. Lactobacillus plantarum ZLP001: In vitro Assessment of Antioxidant Capacity and Effect on Growth Performance and Antioxidant Status in Weaning Piglets. Asian Australasian. Journal of Animal Science, [s.l.], v. 25, n. 8, p.1153-1158, jun. 2012.

WATANABE, M.; VAN, D. V. S.; NAKAJIMA, H.; ABEE, T. Effect of respiration and manganese on oxidative stress resistance of Lactobacillus plantarum WCFS1.Microbiology, [s.l.], v. 158, n. 1, p.293-300, out. 2011

WEINBERG, E. D. The Lactobacillus Anomaly: Total Iron Abstinence. Perspectives in Biology and Medicine, [s.l.], v. 40, n. 4, p.578-583, 1997.

WOLF, G.; ARENDT, E. K.; PFAHLER, U.; HAMMES, W. P. Heme-dependent and heme-independent nitrite reduction by lactic acid bacteria results in different N-containing products. International Journal of Food Microbiology, [s.l.], v. 10, n. 3-4, p.323-329, maio 1990. Disponível em: . Acesso em: 13 nov. 2015.

YAMAMOTO, Y.; POYART, C.; TRIEU, C. P.; LAMBERET, G.; GRUSS, A.; GAUDU, P. Respiration metabolism of Group B Streptococcus is activated by environmental haem and quinone and contributes to virulence. Molecular Microbiology, [s.l.], v. 56, n. 2, p.525-534, 22 fev. 2005. Disponível em: http://api. Wileycom/onlinelibrary/tdm/v1/articles/10.1111/j.1365-2958.2005.04555x Acesso em: 13 nov. 2015.

ZAYED, G.; WINTER, J. Batch and continuous production of lactic acid from salt whey using free and immobilized cultures of lactobacilli. Applied Microbiology and Biotechnology, [s.l.], v. 44, n. 3-4, p.362-366, dez. 1995.

ZHANG, J.; GUO, C. D.; YANPING, Z.; XIAN, Y. L.; MIAO, W.; YIN, L.; CHEN, J. Glutathione Protects Lactobacillus sanfranciscensis against Freeze Thawing, Freeze-Drying, and Cold Treatment. Applied and Environmental Microbiology, [s.l.], v. 76, n. 9, p.2989-2996, mar. 2010.

ZHANG,S.; LIU,L.; SU,Y.; LI,H.; SUN,Q.; LIANG,X.; LV,J. Antioxidative activity of lactic acid bacteria in yogurt. African Journal of Microbiology Research, [s.l.], v. 5, n. 29, p.5194-5201, 9 dez. 2011. Disponível em: http://www. academicjournals. org/AJMR. Acesso em: 13 nov.2015.

ZITZELSBERGER, W.; GOTZ, F.; SCHLEIFER, K. H. Distribution of superoxide dismutases, oxidases, and NADH peroxidase in various streptococci. Fems Microbiology Letters, [s.l.], v. 21, n. 2, p.243-246, mar. 1984


Apontamentos

  • Não há apontamentos.